The same can also be said for the distance plot with the exception of when a track map has been implemented, the corners will typically be marked so that if you find a problem area you will know where it occurred on the track.

The X-Y plot, while less common, has a huge variety of functionality and with the proper engineering talent, can become a very powerful tool. A simple but applicable use is illustrating the reason for a throttle/rpm-based fuel map. An example is when you plot two specific parameter (rpm and throttle), you can see that at the same rpm and throttle site the airbox pressure will vary upwards of 5 in Hg. This illustrates that if a throttle-based fuel map is used, then a pressure compensation must be applied to counterbalance the actual total airflow.

The uncommon histogram is not the most popular tool but a useful one none the less. A histogram plot is a bar chart that shows how much time a channel spends at a variety of selected values. Histograms can be used to visualize the distribution of a particular channel, and can even be used with the rpm channel to determine where peak power is delivered.

While more complex frequency plots should be an integral part of your analysis package. Viewing data in the frequency domain is useful in identifying events in the data that occur at specific frequencies, like the natural frequency of the suspension.

Probably the most unique function of high-end analysis packages are items like a 3-D plot. The 3-D plot can be used for a variety of different assessments, however, we wanted a real-life application, so we turned to the experts at Angerole, a full-time motorsports consulting business. Ron Mathis, the head engineer at Angerole, replied with a wonderful example of putting the 3-D plot through its paces.

One useful tool that this analysis packages may include is the ability to produce a variety of visual track reports. A common one produced at the track is called a Gear Map. These are typically used when doing driver training or getting a driver up to speed at the beginning of the weekend.

Math channels and functions and a good analysis package will allow you to easily create math functions. These math functions should include the ability to nest channels within channels because this will allow you to perform math on an actual math function. Some basic math functions that can be easily done are:

These are simple math channel examples and should be treated as so. Some more complex math channels that we will not provide formulas for but simple verbal examples are: understeer gradient, aero load, load percent front, load total, wheel lockup, and wheel slip. As long as you have the required inputs most good analysis packages will allow you to process it into something useful.

Some data systems will offer onboard math channels, since these math channels are processed onboard they can be sent over a car's telemetry system back to the pits. This can allow engineers to make quick and concise setup decisions without having to download the car.

Telemetry systems, while most will never get their hands on a timing stand, a set of radios, and a data system capable of telemetry, it's probably about the coolest damn thing we have ever played with. So let's see, we are going to monitor almost 100 channels and then we are going to send them over a radio back to the pits so that we can watch in real time? You can imagine now that the possibilities are endless.

With experience, organization, and a lot of patience, data that was once squiggly lines and a pain in the ass to find anything on, will become one of the most useful tools for quantifying any amount of money that you will spend in racing.

We'd like to extend a special thanks to Angerole, Riley Technologies, and EFI Technology. Your aid and input was much appreciated and helped make this article possible.